Monday, October 31, 2016

...and then a miracle happens (or two or three)


Many of you will be familiar with this cartoon, used in many texts on the use of Theories of Change
If you look at diagrammatic versions of Theories of Change you will see two type of graphic elements: nodes and links between the nodes. Nodes are always annotated, describing what is happening at this point in the process of change. But the links between nodes are typically not annotated with any explanatory text. Occasionally (10% of the time in the first 300 pages of Funnell and Rogers book on Purposeful Program Theory) the links might be of different types e.g. thick versus thin lines or dotted versus continuous lines. The links tell us there is a causal connection but rarely do they tell us what kind of causal connection is at work. In that respect the point of Sidney Harris's cartoon applies to a large majority of graphic representations of Theories of Change.

In fact there are two type of gaps that should be of concern. One is the nature of individual links between nodes. The other is how a given set of links converging on a node work as a group, or not, as it may be. Here is an example from the USAID Learning Lab web page. Look at the brown node in the centre, influenced by six other green events below it

 In this part of the diagram there are a number of possible ways of interpreting the causal relationships between the six green events underneath the brown event they all connect to:

The first set are binary possibilities, where the events are or are not important:

1. Some or all of these events are necessary for the brown event to occur.
2. Some of all of the events are sufficient for the brown event to occur
3. None of the events are necessary or sufficient but two or more of combinations of these are sufficient

The fourth is more continuous
4. The more of these events that are present (and the more of each of these) the more the brown event will be present
5. The relationship may not be linear, but exponential or s-shaped or more complex polynomial shapes (likely if there are feedback loops present)

These various possibilities have different implications for how this bit of the Theory of Change could be evaluated. Necessary or sufficient individual events will be relatively easy to test for. Finding combinations that are necessary or sufficient will be more challenging, because there potential many (2^5=32 in the above case). Likewise finding linear and other kinds of continuous relationships would require more sophisticated measurement. Michael Woolcock (2009) has written on the importance of thinking through what kinds of impact trajectories our various contextualised Theories of Change might suggest we will find in this area.

Of course the gaps I have pointed out are only one part of the larger graphic Theory of Change shown above. The brown event is itself only one of a number of inputs into other events shown further above, where the same question arises about how they variously combine.

So, it turns out that Sydney Harris's cartoon is really a gentle understatement of how much more we really need to specify before we can have an evaluable Theory of Change on our hands.

Tuesday, August 09, 2016

Three ways of thinking about linearity



Describing change in "linear" terms is seen as bad form these days. But what does this term linear mean? Or perhaps more usefully, what could it mean?

In its simplest sense it just means one thing happening after another, as in a Theory of Change that describes an Activity leading to an Output leading to an Outcome leading to an Impact. Until time machines are invented, we can't escape from this form of linearity.

Another perspective on linearity is captured by Michael Woolcock's 2009 paper on different kinds of impact trajectories. One of these is linear, where for every x increase in an output there is a y increase in impact. In a graph plotting outputs against impacts, the relationship appears as a straight line. Woolcock's point was that there are many other shaped relationships that can be seen in different development projects. Some might be upwardly curving, reflecting an exponential growth arising from the existence of some form of feedback loop, whereby increased impact facilitates increased outputs. Others may be must less ordered in their appearance as various contending social forces magnify and moderate a project's output to impact relationship, with the balance of their influences changing over time. Woolcock's main point, if I recall correctly, was that any attempt to analyse a project's impact has to give some thought to the expected shape of the impact trajectory, before it plans to collect and analyse evidence about the scale of impact and its causes.

The third perspective on linearity comes from computer and software design.Here the contrast is made between linear and parallel processing of data. With linear processing, all tasks are undertaken somewhere within a single sequence. With parallel processing many tasks are being undertaken at the same time, within different serial processes. The process of evolution is a classic example of parallel processing. Each organism in its interactions with its environment is testing out the viability of a new variant in the species' genome. In development projects parallel processing is also endemic, in the form of different communities receiving different packages of assistance, and then making different uses of those packages, with resulting differences in the outcomes they experience.

In evaluation oriented discussion of complexity thinking a lot of attention is given to unpredictability, arising from the non-linear nature of change over time, of the kind described by Woolcock. But it is important to note that there are various identifiable forms of change trajectories that lie in between simple linear trajectories and chaotic unpredictable trajectories. Evaluation planning needs to think carefully about the whole continuum of possibilities here.

The complexity discussion gives much less attention to the third view of non-linearity, where diversity is the most notable feature. Diversity can arise from both intentional and planned differences in project interventions but also from unplanned or unexpected responses to what may have been planned as standardized interventions. My experience suggests that all too often assumptions are made, at least tacitly, that interventions have been delivered in a standardized manner. If instead the default assumption was heterogeneity, then evaluation plans would need to spell out how this heterogeneity would be dealt with. If this is done then evaluations might become more effective in identifying "what works in what circumstances", including identifying localized innovations that had potential for wider application.