Monday, December 07, 2020

Has the meaning of impact evaluation been hijacked?

 



This morning I have been reading, with interest, Giel Ton's 2020 paper: 
Development policy and impact evaluation: Contribution analysis for learning and accountability in private sector development 

 I have one immediate reaction; which I must admit I have been storing up for some time.  It is to do with what I would call the hijacking of the meaning or definition of 'impact evaluation'.  These days impact evaluation seems to be all about causal attribution. But I think this is an overly narrow definition and almost self-serving of the interests of those trying to promote methods specifically dealing with causal attribution e.g., experimental studies, realist evaluation, contribution analysis and process tracing. (PS: This is not something I am accusing Giel of doing!)

 I would like to see impact evaluations widen their perspective in the following way:

1. Description: Spend time describing the many forms of impact a particular intervention is having. I think the technical term here is multifinality. In a private-sector development programme, multifinality is an extremely likely phenomenon.  I think Giel has in effect said so at the beginning of his paper: " Generally, PSD programmes generate outcomes in a wide range of private sector firms in the recipient country (and often also in the donor country), directly or indirectly."

 2. Valuation: Spend time seeking relevant participants’ valuations of the different forms of impact they are experiencing and/or observing. I'm not talking here about narrow economic definitions of value, but the wider moral perspective on how people value things - the interpretations and associated judgements they make. Participatory approaches to development and evaluation in the 1990s gave a lot of attention to people's valuation of their experiences, but this perspective seems to have disappeared into the background in most discussions of impact evaluation these days. In my view, how people value what is happening should be at the heart of evaluation, not an afterthought. Perhaps we need to routinely highlight the stem of the word Evaluation.

 3. Explanation: Yes, do also seek explanations of how different interventions worked and failed to work (aka causal attribution).  Paying attention of course to heterogeneity, both in the forms of equifinality and multifinality Please Note: I am not arguing that causal attribution should be ignored - just placed within a wider perspective! It is part of the picture, not the whole picture.

 4. Prediction: And in the process don't be too dismissive of the value of identifying reliable predictions that may be useful in future programmes, even if the causal mechanisms are not known or perhaps are not even there.  When it comes to future events there are some that we may be able to change or influence, because we have accumulated useful explanatory knowledge.  But there are also many which we acknowledge are beyond our ability to change, but where with good predictive knowledge we still may be able to respond to appropriately.

Two examples, one contemporary, one very old: If someone could give me a predictive model of sharemarket price movements that had even a modest 55% accuracy I would grab it and run, even though the likelihood of finding any associated causal mechanism would probably be very slim.  Because I’m not a billionaire investor, I have no expectation of being able to use an explanatory model to actually change the way markets behave.  But I do think I could respond in a timely way if I had relevant predictive knowledge.

 Similarly, with the movements of the sun, people have had predictive knowledge about the movement of the sun for millennia, and this informed their agricultural practices.  But even now that we have much improved explanatory knowledge about the sun’s movement few feel this would think that this will help us change the way the seasons progress.

 I will now continue reading Giel's paper…


2021 02 19: I have just come across a special issue of the Evaluation journal of Australasia, on the subject of values. Here is the Editorial section.

Sunday, December 06, 2020

Quality of Evidence criteria that can be applied to Most Significant Change (MSC) stories

 


Two recent documents have prompted me to do some thinking on this subject

If we view Most Significant Change (MSC) stories as evidence of change (and what people think about those changes) what should we look for in terms of quality - what are the attributes of quality we should look for?

Some suggestions that others might like to edit or add to, or even delete...

1. There is clear ownership of an MSC story and the reasons for its selection by the storyteller. Without this, there is no possibility of clarification of any elements of the story and its meaning, let alone more detailed investigation/verification

2. There was some protection against random/impulsive choice. The person who told the story was asked to identify a range of changes that had happened, before being asked to identify the one which was most significant 

3. There was some protection against interpreter/observer error. If another person recorded the story, did they read back their version to the storyteller, to enable them to make any necessary corrections?

4. There has been no violation of ethical standards: Confidentiality has been offered and then respected. Care has been taken not only with the interests of the storyteller but also of those mentioned in a story.

5. Have any intended sources of bias been identified and explained? Sometimes it may be appropriate to ask about " most significant changes caused by....xx..." or "most significant changes of ...x ...type"

6. Have any unintended sources of bias been anticipated and responded to? For example, by also asking about "most significant negative changes " or "any other changes that are most significant"?

7. There is transparency of sources. If stories were solicited from a number of people, we know how these people were identified and who was excluded and why so. If respondents were self-selected we know how they compare to those that did not self-select.

8. There is transparency of selection process: If multiple stories were initially collected then the most significant of these have been selected then reported and used elsewhere, the details of the selection process should be available, including (a) who was involved, (b) how choices were made, and (c) the reasons given for the final choice(s) made

9. Fidelity: Has the written account of why a selection panel chose a story as most significant done the participants' discussion justice? Was it sufficiently detailed, as well as being truthful?

10. Have potential biases in the selection processes been considered? Do most of the finally selected most significant change stories come from people of one kind versus another e.g. men rather than women, one ethnic or religious group versus others? In other words, is the membership of the selection panel transparent? (thanks to Maleeha below).

11.    your thoughts here on.. (using the Comment facility below).

Please note 

1. That in focusing here on "quality of evidence" I am not suggesting that the only use of MSC stories is to serve as forms of evidence. Often the process of dialogue is immensely important and it is the clarification of values and who values what and why so, that is most important. And there are also bound to be other purposes also served

2. (Perhaps the same point, expressed in another way) The above list is intentionally focused on minimal rather than optimal criteria. As noted above, a major part of the MSC process is about the discovery of what is of value, to the participants.  

For more on the MSC technique, see the resources here.