Tuesday, June 23, 2015

Is QCA it's own worst enemy?

[As you may have read elsewhere on this blog] QCA stands for Qualitative Comparative Analysis. It is a method that is finding increased use as an evaluation tool, especially for exploring claims about the causal role of interventions of various kinds. What I like about it is its ability to recognize and analyse complex causal configurations, which have some fit with the complexity of the real world as we know it.

What I don't like about it is its complexity, it can sometimes be annoyingly obscure and excessively complicated. This is a serious problem if you want to see the method being used more widely and if you want the results to be effectively communicated and properly understood. I have seen instances recently where this has been such a problem that it threatened to derail an ongoing evaluation.

In this blog post I want to highlight where the QCA methodology is unnecessary complex and and suggest some ways to avoid this type of problem. In fact I will start with the simple solution, then explain how QCA manages to make it more complex.

Let me start with a relatively simple perspective. QCA analyses fall in to the broad category of "classifiers". These include a variety of algorithmic processes for deciding what category various instances belongs to. For example which types of projects were successful or not in achieving their objectives.

I will start with a two by two table, a Truth Table, showing the various possible results that can be found, by QCA and other methods. Configuration X here is a particular combination of conditions that an analysis has found to be associated with the presence of an outcome. The Truth Table helps us identify just how good that association is, by comparing the incidences where the configuration is present or absent with the incidences where the outcome is present or absent.


As I have explained in an earlier blog, one way of assessing the adequately of the result shown in such a matrix is by using a statistical test such as Chi Square, to see if the distribution is significantly different from what a chance distribution would look like.There are only two possible results when the outcome is present: the association is statistically significant or it is not.

However, if you import the ideas of Necessary and/or Sufficient causes the range of interesting results increases. The matrix can now show four possible types of results when the outcome is present:

  1. The configuration of conditions is Necessary and Sufficient for the outcome to be present. Here cells C and B would be empty of cases
  2. The configuration of conditions is Necessary but Insufficient for the outcome to be present. Here cell C would be empty of cases
  3. The configuration of conditions is Unnecessary but Sufficient for the outcome to be present. Here cell  B would be empty of cases
  4. The configuration of conditions is Unnecessary and Insufficient for the outcome to be present. Here no cells would be empty of cases
The interesting thing about the first three options is that they are easy to disprove. There only needs to be one case found in the cell(s) meant to be empty, for that claim to be falsified.

And we can provide a lot more nuance to the type 4 results, by looking at the proportion of cases found in cells B and C, relative to cell A. The proportion of A/(A+B) tells us about the consistency of the results, in the simple sense of consistency of results found via an examination of a QCA Truth Table. The proportion of A/(A+B) tells us about the coverage of the results, as in the proportion of all present outcomes that exist that were identified by the configuration. 

So how does QCA deal with all this? Well, as far as I can see, it does so in a way makes it more complex than necessary. Here I am basing my understanding mainly on Schneider and Wagemann's account of QCA.
  1. Firstly, they leave aside the simplest notions of Necessity and Sufficiency as described above, which are based on a categorical notion of Necessity and Sufficiency i..e a configuration either is or is not Sufficient etc. One of the arguments I have seen for doing this is these types of results are rare and part of this may be due to measurement error, so we should take  more generous/less demanding view of what constitutes Necessity and Sufficiency
  2. Instead they focus on Truth Tables with results as shown below (classed as 4. Unnecessary and Insufficient above). They then propose ways of analyzing these in terms of having degrees of Necessity and Sufficiency conditions. This involves two counter-intuitive mirror-opposite ways of measuring the consistency and coverage of the results, according to whether the focus is on analyzing the extent of Sufficiency or Necessity conditions (see Chapter 5 for details)
  3. Further complicating the analysis is the introduction of a minimum thresholds for the consistency of Necessity and Sufficiency conditions (because the more basic categorical idea has been put aside). There is no straightforward basis for defining these levels. It is suggested that they depend on the nature of the problem being identified.

  Configuration X contains conditions which are neither Necessary or Sufficient 

Using my strict interpretation of Sufficiency and Necessity there is no need for a consistency measure where a condition (or configuration) is found to be Sufficient but Unnecessary, because there will be no cases in cell B. Likewise, there is no need for a coverage measure where a condition (or configuration) is found to be Necessary but Insufficient, because there will be no cells in cell C,

We do need to know the consistency where a condition (or configuration) is Necessary but Insufficient, and the the coverage, where where a condition (or configuration) is found to be Sufficient but Unnecessary.

Monday, May 25, 2015

Characterising purposive samples



In some situations it is not possible to develop a random sample of cases to examine for evaluation purposes. There may be more immediate challenges, such as finding enough cases with sufficient information and sufficient quality of information.

The problem then is knowing to what extent, if at all, the findings from this purposive sample can be generalised, even in the more informal sense of speculating on the relevance of findings to other cases in the same general population.

One way this process can be facilitated is by "characterising" the sample, a term I have taken from elsewhere. It means to describe the distinctive features of something. This could best be done using attributes or measures that can, and probably already have been, used to describe the wider population where the sample came from. For example, the sample of people could be described as being of average age of 35 versus 25 in the whole population, and 35% women versus 55% in the wider population. This seems a rather basic idea, but it is not always applied.

Another more holistic way of doing so is to measure the diversity of the sample. This is relatively easy to do when the data set associated with the sample is in binary form, as for example is used in QCA analysis (i.e. cases are rows, columns are attributes and cell values of 0 or 1 indicate if the attributes was absent or present)

As noted in earlier blog postings,Simpsons Reciprocal Index is a useful measure of diversity. This takes into account two aspects of diversity: (a) richness, which in a data set could be seen in the number of unique configurations of attributes found across all the cases( think metaphorically of organisms - cases, chromosomes-configurations and genes-attributes) and (b) evenness, which could be seen in the relative number of cases having particular configurations. When the number of cases is evenly distributed across all configurations this is seen as being more diverse than when the number of cases per configuration varies.

The degree of diversity in a data base can have consequences. Where a data set that has little diversity in terms of "richness" there is a possibility that configurations that are identified by QCA or other algorithmic based methods, will have limited external validity, because they may easily be contradicted by cases outside the sample data set that are different from already encountered configurations. A simple way of measuring this form of diversity is to calculate the original number of unique configurations in the sample data set as a percentage of the total number possible, given the number of binary attributes in the sample data set (which is 2 to the power of the number of attributes). The higher the percentage, the less risk that the findings will be contradicted by configurations found in new sets of data (all other things being constant).

Where a data set has little diversity in terms of "balance" it will be more difficult to assess the consistency of any configuration's association with an outcome, compared to others, because there will be more cases associated with some configurations than others. Where there are more cases of a given configuration there will be more opportunities for its consistency of association with an outcome to be challenged by contrary cases.

My suggestion therefore is that when results are published from the analysis of purposive samples there should be adequate characterisation of the sample, both in terms of: (a) simple descriptive statistics available on the sample and wider population, and (b) the internal diversity of the sample, relative to the maximum scores possible on the two aspects of diversity.