Monday, May 25, 2015

Characterising purposive samples



In some situations it is not possible to develop a random sample of cases to examine for evaluation purposes. There may be more immediate challenges, such as finding enough cases with sufficient information and sufficient quality of information.

The problem then is knowing to what extent, if at all, the findings from this purposive sample can be generalised, even in the more informal sense of speculating on the relevance of findings to other cases in the same general population.

One way this process can be facilitated is by "characterising" the sample, a term I have taken from elsewhere. It means to describe the distinctive features of something. This could best be done using attributes or measures that can, and probably already have been, used to describe the wider population where the sample came from. For example, the sample of people could be described as being of average age of 35 versus 25 in the whole population, and 35% women versus 55% in the wider population. This seems a rather basic idea, but it is not always applied.

Another more holistic way of doing so is to measure the diversity of the sample. This is relatively easy to do when the data set associated with the sample is in binary form, as for example is used in QCA analysis (i.e. cases are rows, columns are attributes and cell values of 0 or 1 indicate if the attributes was absent or present)

As noted in earlier blog postings,Simpsons Reciprocal Index is a useful measure of diversity. This takes into account two aspects of diversity: (a) richness, which in a data set could be seen in the number of unique configurations of attributes found across all the cases( think metaphorically of organisms - cases, chromosomes-configurations and genes-attributes) and (b) evenness, which could be seen in the relative number of cases having particular configurations. When the number of cases is evenly distributed across all configurations this is seen as being more diverse than when the number of cases per configuration varies.

The degree of diversity in a data base can have consequences. Where a data set that has little diversity in terms of "richness" there is a possibility that configurations that are identified by QCA or other algorithmic based methods, will have limited external validity, because they may easily be contradicted by cases outside the sample data set that are different from already encountered configurations. A simple way of measuring this form of diversity is to calculate the original number of unique configurations in the sample data set as a percentage of the total number possible, given the number of binary attributes in the sample data set (which is 2 to the power of the number of attributes). The higher the percentage, the less risk that the findings will be contradicted by configurations found in new sets of data (all other things being constant).

Where a data set has little diversity in terms of "balance" it will be more difficult to assess the consistency of any configuration's association with an outcome, compared to others, because there will be more cases associated with some configurations than others. Where there are more cases of a given configuration there will be more opportunities for its consistency of association with an outcome to be challenged by contrary cases.

My suggestion therefore is that when results are published from the analysis of purposive samples there should be adequate characterisation of the sample, both in terms of: (a) simple descriptive statistics available on the sample and wider population, and (b) the internal diversity of the sample, relative to the maximum scores possible on the two aspects of diversity.



Wednesday, May 20, 2015

Evaluating the performance of binary predictions


(Updated 2015 06 06)

Background: This blog posting has its origins in a recent review of a QCA oriented evaluation, in which a number of hypotheses were proposed and then tested using a QCA type data set. In these data set cases (projects) are listed row by row and the attributes of these projects are listed in columns. Additional columns to the right describe associated outcomes of interest. The attributes of the projects may include features of the context as well as the interventions involved. The cell values in the data sets were binary (1=attribute present, 0= not present), though there are other options.

When such a data set is available a search can be made for configurations of conditions that are strongly associated with an outcome of interest. This can be done inductively or deductively. Inductive searches involve the uses of systematic search processes (aka algorithms), of which there are a number available. QCA uses the Quine–McCluskey algorithm. Deductive searches involve the development of specific hypotheses from a body of theory, for example about the relationship between the context, intervention and outcome.

Regardless of which approach is used, the resulting claims of association need evaluation. There are a number of different approaches to doing this that I know of, and probably more. All involve, in the simplest form, the analysis of a truth table in this form:


In this truth table the cell values refer to the number of cases that have each combination of configuration and outcome. For further reference below I will label each cell as A and B (top row) and C and D (bottom row)

The first approach to testing is a statistical approach. I am sure that there are a number of ways of doing this, but the one I am most familiar with is the widely used Chi-Square test. Results will be seen as most statistically significant when all cases  are in the A and D cells. They will be least significant when they are equally distributed across all four cells.

The second approach to testing is the one used by QCA. There are two performance measures. One is Consistency, which is the proportion of all cases where the configuration is present and the outcome is also present (=A/(A+B)). The other is Coverage, which is the proportion of all outcomes that are associated with the configuration (=(A/(A+C)).

When some of the cells have 0 values three categorical judgements can also be made. If only cell B is empty then it can be said that the configuration is Sufficient but not Necessary. Because there are still values in cell C this means there are other ways of achieving the outcome in addition to this configuration.

If only cell C is empty then it can be said that the configuration is Necessary but not Sufficient. Because there are still values in cell B this means there are other additional conditions that are needed to ensure the outcome.

If cells B and C are empty then it can be said that the configuration is both Necessary and Sufficient

In all three situations there only needs to be one case to be found in a previously empty cell(s) to disprove the standing proposition. This is a logical test, not a statistical test.

The third approach is one used in the field of machine learning, where the above matrix is known as a Confusion Matrix. Here there is a profusion of performance measures available (at least 13). Some of the more immediately useful measures are:
  • Accuracy: (A+D)/(A+B+C+D), which is similar to but different from the Chi Square measure above
  • True Positives: A/(A+B), also called Precision, which corresponds to QCA consistency
  • True Negatives: D/(B+D)
  • False Positives: C/(A+C)
  • False Negatives: B/(B+D)
  • Positive predictive value: A/(A+C), also called Recall, which corresponds to QCA coverage
  • Negative predictive value: D/(C+D)
In addition to these three types of tests there are three other criteria that are worth taking into account as well: simplicity, diversity and similarity

Simplicity: Essentially the same idea as that captured in Occam's Razor. This is that simpler configurations are preferable, all other things being equal. For example: A+F+J leads to D is a simpler hypothesis than A+X+Y+W+F leads to D. Complex configurations can have a better fit with the data, but at the cost of being poor at generalising to other contexts. In Decision Tree modelling this is called "over-fitting" and solution is "pruning", i.e. cutting back on the complexity of the configuration.  Simplicity has practical value, when it comes to applying tested hypotheses in real life programmes. They are easier to communicate and to implement. Simplicity can be measured at two levels: (a) the number of attributes in a configuration that is associated with an outcome, (b) and the number of configurations needed to account for an outcome.

Diversity: The diversity of configurations is simply the number of different specific configurations in a data set. It can be made into a comparable measure by calculating it as a percentage of the total number possible. The total number possible is 2 to the power of A where A = number of kinds of attributes in the data set. A bigger percentage = more diversity.

If you want to find how "robust" a hypothesis is, you could calculate the diversity present in the configurations of all the cases covered by the hypothesis (i.e. not just the attributes specified by the hypotheses, which will be all the same). If that percentage is large this suggests the hypothesis works in a greater diversity of circumstances, a feature that could be of real practical value.

This notion of diversity is to some extent implicit in the Coverage measure. More coverage implies more diversity of circumstances. But two hypotheses with the same coverage (i.e. proportion of cases they apply to) could be working in circumstances with quite different degrees of diversity (i.e. the cases covered were much more diverse in their overall configurations).

Similarity: Each row in a QCA like data set is a string of binary values. The similarity of these configurations of attributes can be measured in a number of ways:
  • Jaccard index, the proportion of all instances in two configurations where the binary value 1 is present in the same position i.e. the same attribute is present.
  • Hamming distance, the number of positions at which the corresponding values in two configurations are different. This includes the values 0 and 1, whereas Jaccard only looks at 1 values
These measures are relevant in two ways, which are discussed in more detail further down this post:
  • If you want to find a "representative" case in a  data set, you would look for the case with the lowest average Hamming distance in the whole data set
  • If you wanted to compare the two most similar cases, you would look for the pair of cases with the lowest Hamming distance.
Similarity can be seen as a third facet of diversity, a measure of the distance between any two types of cases. Stirling (2007) used the term disparity to describe the same thing.

Choosing relevant criteria: It is important to note that the relevance of these different association tests and criteria will depend on the context. A surgeon would want a very high level of consistency, even if it was at the cost of low coverage (i.e. applicable only in a limited range of situations). However, a stock market investor would be happy with a consistency of 0.55 (i.e 55%), especially if it had wide coverage. Even more so if that wide coverage contained a high level of diversity. Returning to the medical example, a false positive might have different consequences to false negatives e.g. unnecessary surgery versus unnecessary deaths. In other non-medical circumstances, false positives may be more expensive mistakes than false negatives.

Applying the criteria: My immediate interest is in the use of these kinds of tests for two evaluation purposes. The first is selective screening of hypotheses about causal configurations that are worth more time intensive investigations, an issue raised in a recent blog.
  • Configurations that are Sufficient and not Necessary or Necessary but not Sufficient. 
    • Among these, configurations which were Sufficient but not Necessary, and with high coverage should be selected, 
    • And configurations which were Necessary but not Sufficient, and with high consistency, should also be selected. 
  • Plus all configurations that were Sufficient and Necessary (which are likely to be less common)
The second purpose is to identify implications for more time consuming within-case investigations. These are essential, in order to identify casual mechanism at work that connect the conditions that are associated in a given configuration. As I have argued elsewhere, associations are a necessary but insufficient basis for a strong claim of causation. Evidence of mechanisms is like muscles on the bones of a body, enabling it to move.

Having done the filtering suggested above, the following kinds of within-case investigations would seem useful:
  • Are there any common casual mechanisms underlying all the cases  found to be Necessary and Sufficient, i.e those within cell A? 
    • A good starting point would be a case within this set of cases that had the lowest average Hamming distance, i.e. one with the highest level of similarity with all the other cases. 
    • Once one or more plausible mechanism were discovered in that case a check could be made to see if they are present in other cases in that set, this could be done in two ways: (a) incrementally, by examining adjacent cases, i.e cases with the lowest Hamming distance from the representative case, (b) by partitioning the rest of the cases, and examining a case with a median level Hamming distance, i.e. half way between being the most similar and most different cases.
  • Where the configuration is Necessary but not Sufficient, how do the cases in cell B differ from those in cell A, in ways that might shed more light on how the same configuration leads to different outcomes? This is what has been called a MostSimilarDifferentOutcome (MSDO) comparison,
    • If there are many cases this could be quite a challenge, because the cases could differ on many dimensions (i.e. on many attributes). But using the Hamming distance measure we could make this problem more manageable by selecting a case from cell A and B that had the lowest possible Hamming distance. Then a within-case investigation could find additional undocumented differences that account for some or all of the difference in outcomes. 
      • That difference could then be incorporated into the current hypothesis (and data set) enabling more cases from cell B to now be found in cell A i..e Consistency would be improved
  • Where the configuration is Sufficient but not Necessary,in what ways are the cases in cell C the same as those in cell A, in ways that might shed more light on how the same outcome is achieved by different configurations? This is what has been called a MostDifferentSimilarOutcome (MDSO) comparison,
    • As above, if there are many cases this could be quite a challenge. Here I am less clear, but de Meur et al (page 72) say the correct approach is "...one has to look for similarities in the characteristics of initiatives that differ the most from each other; firstly the identification of the most differing pair of cases and secondly the identification of similarities between those two cases" The within-case investigation should look for undocumented similarities that account for some of the similar outcomes. 
      • That difference could then be incorporated into the current hypothesis (and data set) enabling more cases from cell C to now be found in cell A i..e Coverage would be improved


Tuesday, May 19, 2015

How to select which hypotheses to test?



I have been reviewing an evaluation that has made use of QCA (Qualitative Comparative Analysis). An important part of the report is the section on findings, which lists a number of hypotheses that have been tested and the results of those tests. All of these are fairly complex, involving a configuration of different contexts and interventions, as you might expect in a QCA oriented evaluation.  There were three main hypotheses, which in the results section were dis-aggregated into six more specific hypotheses. The question for me, which has  much wider relevance, is how do you select hypotheses for testing, given limited time and resources available in any evaluation?

The evaluation team have developed three different data sets, each will 11 cases, and with 6, 6 and 9 attributes of these cases (shown in columns), known as "conditions" in QCA jargon. This means there are 26 + 26  + 29 = 640  possible combinations of these conditions that could be associated with and cause the outcome of interest. Each of the hypotheses being explored by the evaluation team represents one of these configurations. In this type of situation, the task of choosing an appropriate hypotheses seems a little like looking for a needle in a haystack

It seems there are at least three options, which could be combined. The first is to review the literature and find what claims (supported by evidence) are made there about "what works" and select from these those that are worth testing e.g. one that seems to have wide practical use, and/or one that could have different and significant program design implications if it is right or wrong. This seems to be the approach that the evaluation team has taken, though I am not so sure to what extent they have used the programming implications as an associated filter.

The second approach is to look for constituencies of interest among the staff of the client who has contracted the evaluation.There have been consultations, but it is not clear what sort of constituencies each of the tested hypotheses have. There were some early intimations that some of the hypotheses that were selected are not very understandable. That is clearly an important issue, potentially limiting the usage of the evaluation findings.

The third approach is an inductive search, using QCA or other software, for configurations of conditions associated with an outcome that have both high level of consistency (i.e. they are always associated with the presence (or the absence ) of an outcome) and  coverage (i.e. they apply to a large proportion of the outcomes of interest). In their barest form these configurations can be be considered as hypotheses. I was surprised to find that this approach had not been used, or at least reported on, in the evaluation report I read. If it had been used but no potentially useful configurations found then this should have been reported (as a fact, not a fault).

Somewhat incidentally, I have been playing around with the design of an Excel worksheet and managed to build in a set of formula for automatically testing how well different configurations of conditions of particular interest (aka hypotheses) account for a set of outcomes of interest, for a given data set. The tests involve measures taken from QCA (consistency and coverage, as above) and from machine learning practice (known as a Confusion Matrix). This set-up provides an opportunity to do some quick filtering of a larger number of hypotheses than an evaluation team might initially be willing to consider (i.e. the 6 above). It would not be as efficient a search as the QCA algorithm, but it would however be a search that could be directed according to specific interest. Ideally this directed search process would identify configurations that are both necessary and sufficient (for more than a small minority of outcomes). A second best result would be those that are necessary but insufficient, or vice versa. (I will elaborate on these possibilities and their measurement in another blog posting)

The wider point to make here is that with the availability of a quick screening capacity the evaluation team, in its consultations with the client, should then be able to broaden the focus of useful discussions away from what are currently quite specific hypotheses,  and towards the contents of a menu of a limited number of conditions that can not only make up these hypotheses but also other alternative versions. It is the choice of these particular conditions that will really make the difference, to the scale and usability of the results of a QCA oriented evaluation. More optimistically, the search facility could even be made available online, for continued use by those interested in the evaluation results, and their possible variants

The Excel file for quick hypotheses testing is here: http://wp.me/afibj-1ux